Polynômes de Jacobi généralisés et intégrales de Selberg
نویسندگان
چکیده
Ce travail est dedie a Dominique Foata pour son 60-i` eme anniversaire Résumé G. Anderson a développé une méthode nouvelle pour calculer l'in-tégrale de Selberg. Nous montrons que cette méthode s'applique aussi pour calculer une généralisation de l'intégrale de Selbergétudiée par J. Kaneko. Le résultat s'exprimè a l'aide des polynômes de Jacobi symétriquesà plusieurs variables. La preuve utilise les opérateurs de montée et de descente qui leur sont associés.
منابع مشابه
Polytopes from Subgraph Statistics
We study polytopes that are convex hulls of vectors of subgraph densities. Many graph theoretical questions can be expressed in terms of these polytopes, and statisticians use them to understand exponential random graph models. Relations among their Ehrhart polynomials are described, their duals are applied to certify that polynomials are nonnegative, and we find some of their faces. For the ge...
متن کاملA generalization of Mehta-Wang determinant and Askey-Wilson polynomials
Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the n×n determinant det((a+ j− i)Γ(b+ j + i)) in 2000. When a = 0, Ciucu and Krattenthaler computed the associated Pfaffian Pf((j− i)Γ(b+ j + i)) with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a q-analogue by replacing the Gamma function by the ...
متن کاملInvariant Ring of Clifford-weil Group, and Jacobi Forms over Totally Real Field
— In this paper we show that the invariant polynomial ring of the associated Clifford-Weil group can be embedded into the ring of Jacobi modular forms over the totally real field, so, therefore, that of Hilbert modular forms over the totally real field. Résumé (Anneau des invariants du groupe de Clifford-Weil, et forme de Jacobi sur un corps totallement réel) Dans cet article nous démontrons qu...
متن کاملMini-cours Sur Les Polynômes À Une Variable
I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne de polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Racines et factorisation de polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Racines multiples et polynôme dérivé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Interpolation . . . . ...
متن کاملThe generalized Gelfand – Graev characters of GL n ( F q ) ( extended abstract )
Introduced by Kawanaka in order to find the unipotent representations of finite groups of Lie type, generalized Gelfand–Graev characters have remained somewhat mysterious. Even in the case of the finite general linear groups, the combinatorics of their decompositions has not been worked out. This paper re-interprets Kawanaka’s definition in type A in a way that gives far more flexibility in com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 3 شماره
صفحات -
تاریخ انتشار 1996